DZero experiment

Recent results

Run II started in March 2001 Peak Luminosity: $3.2 \cdot 10^{32}$ cm⁻²s⁻¹ Delivered: > 4.8 fb⁻¹ (Run I: 0.16 fb⁻¹)

Теватрон вышел на проектную светимость, и в настоящее время за 1 месяц работы набирается интегральная светимость больше чем во всём Run I.

Сейчас интегральная светимость – ~ 5 fb⁻¹, к концу 2009 г. – 6-7 fb⁻¹, 2010 – 8-9 fb⁻¹, 2011 ?

The DØ Collaboration

DØ is an international collaboration of 600 physicists from 18 nations who have designed, built and operate the DØ detector at the Tevatron and perform data analysis

Institutions: 82 total, 38 US, 44 non-US

- Collaborators:
- ~ 50% from non-US institutions (note strong European involvement)
- ~ 100 postdocs, 140 graduate students

Physics Goals

Precision tests of the Standard Model

- Weak bosons, top quark, QCD, B-physics

Search for particles and forces beyond those known

- Higgs, supersymmetry, extra dimensions....

Silicon Microstrip Tracker

800 000 micro strips, $\Delta x = 50 - 70 \ \mu m$

Scintillating Fiber Tracker

- 8 axial and 8 stereo fibers double layers
- Performing well ٠
 - Light yield of ~7 pe/mip ٠
- Number of operating channels > 98%
 Substantially improved readout electronics AFEII boards since late 2006 ٠
 - Excellent amplitude resolution and no saturation up to highest luminosity
 Provide hits longitudinal coordinate
 - measurement capability

Calorimeter and Muon System

Uranium Liquid Argon calorimeter Drift tubes and scintillation counters based muon system

Stable and reliable operation

- Less than 0.1% of non-working channels in the calorimeter and 0.5% in the muon system
- No detectors radiation damage issues
- Stable operation since early Run II

"Typical" event display at the Tevatron:

Physics Program

- Limit on the B_s to µµ branching ratio
- CP violation studies in B_s system
 - Mass difference ∆m_s
 - Lifetime Γ and lifetime difference $\Delta\Gamma$
 - CP-violating phase ϕ_s
- High precision measurement of W boson mass
- High precision measurement of the top quark mass
- Studies of the top quark production and properties
- Precision measurements of the top quark production cross sections
- Search for SM Higgs boson
- Search for non-SM Higgs boson(s)
- Search for SUSY in many modes
- Search for high mass resonances (Z', extra dimensions, etc.)
- Highest energy QCD jets studies
- Di-boson production and studies of anomalous couplings

PNPI

Readout electronics for 50 000 mini drift tubes Software for the data acquisition by our electronics Software for the electronics interface Determination of the D0-Tevatron luminosity Calibration of the D0 Calorimeter Calibration of the D0 ICD Reprogramming of the electronics Estimation of the D0 SM background for top quark and Higgs boson physics

Publications

~ 20 in 2007
~ 40 in 2008
~ 100 in total during Run II
Our contribution - 1 paper

Top quark Pair Production & Decay

Top quarks are mainly produced in pairs, via the strong interaction

 $m_t > m_W + m_b \Longrightarrow$ dominant 2-body decay t \rightarrow Wb $\Gamma_t^{SM} \approx 1.4 \text{ GeV}$ at $m_t = 175 \text{ GeV}$

Top quark cross section production: $\sigma = 6.8 + - 0.6 \text{ pb}$

Assuming that production is governed by the SM, Top quark mass can be extracted comparing the measured cross section with theory

M(top)=169.1±6.5 GeV

t - anti-t forward-backward asymmetry

 $pp \rightarrow tt + X$

Events where the top quark is more forward with respect to the p-beam

Events where the anti-top quark is more forward with respect to the p-beam

The SM NLO QCD – A_{bf} = 5-10% First measurement (D0): A_{bf} = 12 +/- 8 %

The measured A_{bf} is consistent with the MC NLO SM predictions

 $m_t \sim 170 \text{ GeV}$ vs $m_b \sim 5 \text{ GeV}$

m_t ~ gold atom

It is the only bare quark. It decays so quickly that the strong force does not confine it.

```
\mathbf{M}_{t} \And \mathbf{M}_{W} \to \mathbf{M}_{H}
```


M(top)=172.4±0.7±1.0 GeV

Single Top Production

s-channel	<i>t</i> -channel
σ = 0.88 \pm 0.11 pb	σ = 1.98 ± 0.25 pb

Single top quark production for the first time was observed at D0

CDF and DØ tb+tqb Cross Section

SM →
$$V_{tb} \approx 1.0$$
 (6 quarks)
D0
|Vtb| = 1.31 + 0.25 - 0.21
0.68 ≤ |V_{tb}| ≤ 1.0

CDF

 $|Vtb| = 0.88 \pm 0.12 \pm 0.07$

B – **B** mixing and oscillations

$$\begin{aligned} |\mathsf{B}_1\rangle &= (|\mathsf{B}\rangle + |\mathsf{B}\rangle) / \sqrt{2} &= |\mathsf{B}_H\rangle \quad \mathsf{B}_H \to \mathsf{M}_H, \ \mathsf{\Gamma}_H \\ |\mathsf{B}_2\rangle &= (|\mathsf{B}\rangle - |\mathsf{B}\rangle) / \sqrt{2} &= |\mathsf{B}_L\rangle \quad \mathsf{B}_L \to \mathsf{M}_L, \ \mathsf{\Gamma}_L \end{aligned}$$

$$\Delta m = M_{H} - M_{L}$$
$$\Delta \Gamma = \Gamma_{L} - \Gamma_{H}$$

Matter \longleftrightarrow Antimatter $B_{s}^{0} \bigcirc u,c,t \bigcirc u,c,t \oslash b$ $s \bigotimes W \longrightarrow b$

 $Prob[\mathbf{B}](t) = [\exp(-\Gamma_1 t) + \exp(-\Gamma_2 t) + 2\exp(-\Gamma t)\cos(\Delta m t)]$ $Prob[\mathbf{B}](t) = [\exp(-\Gamma_1 t) + \exp(-\Gamma_2 t) - 2\exp(-\Gamma t)\cos(\Delta m t)]$

 $\mathsf{A=}\{\mathsf{N[B]}(t) - \mathsf{N[B]}(t)\} / \{\mathsf{N[B]}(t) + \mathsf{N[B]}(t)\} \approx \cos(\Delta m t)$

If initially start with a $B \rightarrow$

B_s⁰ oscillations

 $\mathbf{B_s^0} - (\mathbf{bs}) \quad \tau(\mathbf{B_s}) \approx 1.5 \text{ ps}$

This result rules out some versions of the SUSY theory which predict faster rates of oscillations

B_s⁰ mixing parameters

- $B_s{}^0 \to J/\psi \; \phi$
- $\begin{array}{l} J/\psi \rightarrow \mu^{+}\mu^{-} \\ \Phi \rightarrow K^{+}K^{-} \end{array}$

Time-dependent angular distributions of μ+, μ-, K+, K-

$$SM \rightarrow \Phi_s$$
 = -0.04 +/- 0.01

 $\overline{\tau}(B_s^0) = 1.52 \pm 0.05 \text{ (stat)} \pm 0.01 \text{ (syst) ps}$ $\Delta \Gamma_s = 0.19 \pm 0.07 \text{ (stat)} \stackrel{+0.02}{_{-0.01}} \text{ (syst) ps}^{-1}$

CP violating phase:

 $\phi_s = -0.57^{+0.24}_{-0.30}$ (stat) $^{+0.07}_{-0.02}$ (syst) rad

• Probability of SM 6.6% $\Rightarrow ~ \sim 1.8\sigma$

First direct observation of the strange b baryon Ξ_b^-

The STANDARD MODEL	d u	M _d =6 MeV, M _u =3 MeV,
	S C	M_s =100 MeV, M_c =1.2 GeV,
	b t	M _b =4.4 GeV, M _t =173 GeV

 $\Lambda_{b}(udb)$ was observed previously

 $\Xi_b^{-}(dsb) - ?$ – indirect evidence was obtained at the CERN LEP collider An excess of Ξ^- events was observed in jets. This excess was interpreted as due to $\Xi_b^- \rightarrow \Xi^- \ell^- \nu X$ The lifetime of Ξ_b^- was estimated to be 1.4 +/- 0.3 ps. The mass of Ξ_b^- is expected to be 5.7 – 5.8 GeV

DELPHI 1995, ALEPH 1996, DELPHI 2004. D0 – first direct observation of Ξ_b^- -- Phys. Rev. Lett. 99, 052001 (2007)

$$\begin{split} \Xi_b^- &\rightarrow J/\Psi + \Xi^- \\ J/\Psi \rightarrow \mu^+ \mu^- \\ \Xi^- &\rightarrow \Lambda \pi^- \\ \Lambda \rightarrow p \pi^- \\ J/\Psi (\text{cc}) \text{ M=3.097 GeV} \\ \Xi^- (\text{dss}) \text{ M=1.315 GeV}, \tau = 290 \text{ ps.} \\ \Lambda (\text{uds}) \text{ M=1.116 GeV}, \tau = 263 \text{ ps.} \end{split}$$

 $\lambda(\Xi_{b}^{-}) = \sim mm$ $\lambda(\Xi^{-}) = \sim 5 cm$ $\lambda(\Lambda) = \sim 5 cm$

Run 179200, Event 55278820, $M(\Xi_b) = 5.788$ GeV

Mass spectrum of Ξ^-

M(Ξ_b⁻)=5.774 +/- 0.19 GeV

15 событий над фоном в 3 события.

Significance - 5.5σ .

$$M(\Xi_b^-) = (5,792.9 \pm 2.4(stat.) \pm 1.7(syst.)) \text{ MeV/c}^2$$

CDF observes Ξ_b . Significance is 7.8 σ

First observation of the doubly strange b baryon Ω_b^-

 $M(\Omega^{-}) = 1.672 \text{ Gev/c}^2$

Mass spectrum of $\,\Omega^{\,-}$

probability of background fluctuation - $< 7*10^{-8}$

Higgs search at DZero

Previous studies – M_{Higgs} > 114 GeV Indirect evidence – M_{Higgs} < 180 GeV

Higgs production rate excluded on the 95% C.L.

Combined D0 and CDF result

D0+CDF exclude a Higgs boson with a mass of ~170 GeV at the 95% confidential level.

W Boson Mass

Constraint on SM Higgs mass is now dominated by the W mass uncertainty:

$$\Delta m_t = 1.2 \text{ GeV} \rightarrow \Delta M_H = +9/-8 \text{ GeV}$$

New results expected soon!

- CDF working on 2.4 fb-1 measurement
- DØ working on 1 fb-1 measurement

First observation of double Z production

pp \rightarrow ZZZZ \rightarrow 4e, 4µ, 2e2µObserved 3 events, the background being 0.14 events.Theory: $\sigma = 1.4 +/- 0.1 \text{ pb}$.The significance is 5.7 σ Experiment D0: $\sigma = 1.6 +/- 0.6 \text{ pb}$,Experiment CDF: $\sigma = 1.4 +/- 0.7 \text{ pb}$.

X(3872) - (cc), (ccqq), (D⁰D^{0*}) ?

M[X(3872)] = 3871.61 +- 0.16 (stat) +- 0.19 (syst) MeV/c2; M[D⁰] + M[D⁰*] = 3.871.81

Inclusive jet production

pQCD – perturbative QCD

Данные свидетельствуют о большом (~50%) вкладе в сечение множественных партонных взаимодействий

Распределения по поперечному импульсу лидирующей струи для одно-, дважды-, трижды- и четырежды инклюзивным событиям: (a), (b), (c) и (d), соответственно. Гистограммы показывают результаты моделирования РҮТНІА.

b and c quarks in the proton

 $pp \rightarrow \gamma + b$

 $pp \rightarrow \gamma + c$

Production rate for photons in association with a **b** quark (left) or a **c** quark (right) versus the photon transverse momentum

$$B_s\!\!\rightarrow\!\!2\mu$$

Димюонный спектр в области инвариантной массы $B_s \rightarrow 2\mu$

Br(B_s
$$\rightarrow 2\mu$$
) = 5.1 $\rightarrow 0.9*10^{-7}$ 95% CL $\rightarrow 10^{-8}$?
(SM - 3*10⁻⁹)

Search for excited electrons

Leptons and quarks consist of 3 fermions or a boson and a fermion ?

 $D0 \rightarrow no evidence of e^* with m[e^*] \le 800 \text{ GeV}$

The distribution of the $e_2\gamma$ invariant mass compared with the SM expectation and a possible e^{*} signal for $m_{e^*} = 100 \text{ GeV}$

m(e₂γ) [GeV]

100

О

200

300

Search for charged massive "stable" particles

(tau sleptons, gaugino-like charginos, higgsino-like charginos, candidates for dark matter)

Mass	Signal	Predicted	Observed		
(GeV)	Acceptance	Background	\mathbf{Events}		
	(a) st	au			
60	$0.064 \pm 0.001 \pm 0.005$	$30.9 \pm 2.2 \pm 1.9$	38		
80	$0.038 \pm 0.001 \pm 0.005$	$2.6\pm0.6\pm0.4$	1		
100	$0.056 \pm 0.001 \pm 0.004$	$1.6\pm0.5\pm0.3$	1		
150	$0.123 \pm 0.002 \pm 0.013$	$1.7\pm0.5\pm0.2$	1		
200	$0.139 \pm 0.002 \pm 0.011$	$1.7\pm0.5\pm0.5$	1		
250	$0.133 \pm 0.002 \pm 0.013$	$1.7\pm0.5\pm0.3$	1		
300	$0.117 \pm 0.002 \pm 0.013$	$1.9\pm0.5\pm0.2$	2		
	(b) gaugino-like charginos				
60	$0.032 \pm 0.001 \pm 0.003$	$23.6\pm1.9\pm1.4$	24		
80	$0.024 \pm 0.001 \pm 0.003$	$1.9\pm0.5\pm0.3$	1		
100	$0.046 \pm 0.001 \pm 0.004$	$1.6\pm0.5\pm0.3$	1		
150	$0.085 \pm 0.001 \pm 0.009$	$1.2\pm0.4\pm0.1$	1		
200	$0.089 \pm 0.001 \pm 0.007$	$1.9\pm0.5\pm0.0$	1		
250	$0.074 \pm 0.001 \pm 0.007$	$1.7\pm0.5\pm0.3$	1		
300	$0.059 \pm 0.001 \pm 0.007$	$1.7\pm0.5\pm0.1$	2		
(c) higgsino-like charginos					
60	$0.029 \pm 0.001 \pm 0.002$	$17.9 \pm 1.7 \pm 1.1$	21		
80	$0.024 \pm 0.001 \pm 0.003$	$1.6\pm0.5\pm0.3$	1		
100	$0.049 \pm 0.001 \pm 0.004$	$1.6\pm0.5\pm0.3$	1		
150	$0.089 \pm 0.001 \pm 0.009$	$1.4\pm0.5\pm0.1$	1		
200	$0.096 \pm 0.001 \pm 0.008$	$1.9\pm0.5\pm0.0$	1		
250	$0.081 \pm 0.001 \pm 0.008$	$1.7\pm0.5\pm0.3$	1		
300	$0.064 \pm 0.001 \pm 0.007$	$1.7\pm0.5\pm0.1$	1		

No evidence for such particles. $\sigma < 0.3 - 0.04$ pb for stau masses 60 - 300 GeV

Search for scalar or vector particles decaying into Zy

$Z \to \texttt{l+l}^{\text{-}}$

Experimental limits on the production cross section: M = 140 GeV – $\sigma \le 3$ pb, M = 600 GeV – $\sigma \le 0.2$ pb.

Search for large extra dimensions

pp \rightarrow g + γ register a photon with p_t > 90 GeV and E_t_miss > 70 GeV

Поиск квантовой гравитации

 $pp \rightarrow W(Z) + g \quad W \rightarrow \mu + \nu \qquad g - Kaluza-Klein graviton$

Отбор: малая суммарная энергия в калориметре, большой поперечный импульс μ – мезона, большая недостающая поперечная энергия. **pp** \rightarrow W(Z) + g modernized generator has been included to Pythia 8.3

MET distribution of the data for $p_t(\mu) > 15$ GeV, ΣE_t (calorimeter) < 15 GeV.

In 2009, simulations of the MET spectrum for the signal, simulations of the background processes.

CDF

